
TNM034 2014

An Automated Pipeline for
Extracting and Decoding
QR-codes from Arbitrary

Images

John Hollén
johho982@student.liu.se

Simon Bergström
simbe109@student.liu.se

December 12, 2014

Abstract
This is an abstract.

Contents
1 Introduction 1

2 Theory 1

3 Method 2
3.1 Binarizing the Image . 2
3.2 Localizing the Fiducial Marks 3
3.3 Rotation . 6
3.4 Adjustment for Perspective Distortion 6

3.4.1 Corner Detection . 7
3.4.2 Projective Transformation 9

3.5 Cropping . 10
3.6 Decoding the QR-code . 11

4 Result 11

5 Conclusion and Discussion 12
5.1 Performance . 12
5.2 Corner detection . 13
5.3 Transformations . 13
5.4 Special cases . 13

1 Introduction
This report describes the implementation of an automated pipeline for ex-
tracting a QR code out of an image and decoding it to a string of text.
Problems with decoding QR codes such as spatial and photometric distor-
tion are considered in this report and the solutions in the implementation
are discussed together with possible improvements that could be done. The
project is restricted to only consider QR codes of version 6. The implemen-
tation has been done in Matlab.

2 Theory
QR-code is short for quick response code and is a two dimensional barcode
that consists of binary information. Computers can extract this information
and make it understandable for humans, or the information could be used to
redirect the machine to for example visit a certain webpage or make smart
phones open a specific application.

The QR-code version 6 is 41x41 pixels in size. It contains three fiducial
marks that are used to localize it and an alignment pattern that is used to
determine the orientation of the QR-code. The distance and size specifica-
tions are visible in Fig.1. Around the fiducial marks there are quiet zones,
at least one bit in size where no information is present.

Figure 1: To the left: an example of a QR-code version 6. To the right is the

dimensions of the QR-code.

1

3 Method
The implementation is made without any interaction during the execution.
The input is an image, containing a QR-code and the output is a string
of text. The method for finding and extracting QR-codes is divided into
several steps. Each step is described in its own subsection. Something worth
mentioning is that operations that require interpolation, such as resizing,
rotating and perspective projection are all made on a grayscale version of
the original image. All steps in the pipeline are illustrated in Fig.2.

Figure 2: All the steps in the pipeline for extracting QR-codes.

3.1 Binarizing the Image
In order to be able to manage images with a wide variation in brightness and
contrast, an adaptive binarization function has been implemented. After the
image has been converted to only contain grey scale values, the first step in
the adaptive binarization function is to calculate an integral image from the
original image.

An integral image is also known as a summed area table [6]. It is a data
structure where the sum of the pixel values in the original image is stored in
the corresponding cell in the integral image. How this is done is illustrated
in Fig.3.

2

Figure 3: An intensity image to the left and its calculated integral image to

the right.

When the integral image has been calculated a window of pixels is created.
The size of this window is 1/8 of the width of the image. This window is
then iterated over the image. During this iteration the average of the pixel
values in the integral image that are inside the window is calculated. If the
current pixel is a certain percentage lower than the average of the window,
the pixel in the original image is set to black. Otherwise the pixel is set to
white. The percentage is set to 15% according to [6].

This method is only used in order to find the fiducial marks in the QR-
code properly. It is not used in the last step when the decoding of the
QR-code is done, because when binarizing the QR-code in the last step, a
global binarization method provides a better result.

3.2 Localizing the Fiducial Marks
The so called fiducial marks are three shapes located in three of the corners
of the QR-code. The fiducial marks have the shape of a square containing
black and white pixels. The black and white segments of the square have the
ratio 1:1:3:1:1 [5] in the order black, white, black, white and finally black.
By scanning the binarized version of the original image both horizontally
and vertically segments of black and white pixels can be extracted. For each
segment, the size of the segment and the pixel position where the segment
ends are stored in a separate list.

3

Figure 4: Image of a fiducial mark showing the ratios between black and

white.

When all the segments in the image have been extracted, the list of seg-
ments is searched. First a black segment is looked up. Then the segments
upwards, downwards, to the right and to the left are checked in order to
determine if the ratio is fulfilled. When a match has been found, the corre-
sponding pixel positions in an otherwise black image with the same size as
the original image are coloured white. See Fig.5. The result is a black image
with small white fields where the algorithm has found a match. This enables
labelling of the white fields in a later stage.

If a match has been found or not is determined by the following code
snippet. The snippet shows how it is done when scanning vertically.

4

findpattern = zeros(height, width);

percentage = 0.32;

%Check middle to adjacent

if abs(middleBlack-3*upWhite) <= percentage*middleBlack &&

abs(middleBlack-3*downWhite) <= percentage*middleBlack

%Check the outer segments

if abs(upWhite-upBlack) < percentage*upWhite &&

abs(downWhite-downBlack) < percentage*downWhite

%Match is found, color the pixels in the black image white.

%SegmentsY contains the pixel positions for the segments end.

findpattern(segmentsY(i-2, 2):segmentsY(i+2, 2),

segmentsY(i-2, 3):segmentsY(i+2, 3)) = 1;

end

end

The result of this code snippet is shown in Fig.5.

Figure 5: To the right: the black image with white segments where a match

has been found. To the left: the marked fiducial marks.

When all the white fields in the otherwise black image have been labelled
the center of these fields are determined. First a check is made determining
if the white fields have a rectangular shape. Then the center of the rectangle
is calculated. Sometimes false positives will cause the labelled field to not
form a rectangular shape. In such case, the median coordinates of the field
are chosen as center point. To make sure the center point is really in the

5

center of the fiducial mark the pixels in the center of the fiducial mark are
counted and the center point is moved to the exact center.

3.3 Rotation
At this stage, the QR-code has been detected. In order to decode the QR-
code it needs to be straightened. The first step in the straightening process is
to rotate the QR-code so that it has the right orientation. Since the centers
of all fiducial marks are now known, they can be used for rotation. In this
implementation the two fiducial marks at the top are used. By subtracting
one of the fiducial marks at the top from the other the vector between them
will be achieved. By normalizing this vector and applying the dot product
between it and the x-axis the angle between them can be calculated. This is
illustrated in the equation Eq.1.

– = cos≠1(v̂ · x̂) (1)
Where – is the achieved angle, v̂ is the normalized vector between the fiducial
marks and x̂ is a normalized vector with the same direction as the x-axis.
After the angle has been calculated a check is made whether the vector v̂
has a negative x component. If that is the case the resulting angle – will be
– = – ≠ fi. The image in Fig.6 shows an image before and after rotation.
To not lose the coordinates of the fiducial marks, these coordinate are also
rotated by applying a rotation matrix.

Figure 6: Before rotation on the left, and after rotation on the right.

3.4 Adjustment for Perspective Distortion
Even though the QR-code is now rotated properly, it may still have spa-
tial distortion that could possibly make the QR-code unreadable. The most

6

common spatial distortion among the images in the training set used for this
project is perspective distortion. To account for this, projective transforma-
tion was used. In projective transformation lines are mapped to other lines.
In this implementation the corners of the QR-code together with the center
point of the alignment pattern is used as tie points to perform the projective
transformation.

3.4.1 Corner Detection

The projective transformation needs a minimum of two 4 ◊ 2 matrices con-
taining points from the image as input. The two matrices must match in
size. One of the two matrices will be called fixed points and the other one
will be called moving points.

The moving points - matrix should contain points in the image that are
to be moved or mapped to new points. In this implementation the corners of
the QR-code have been used. First, the corners where the fiducial marks were
found are determined. This is done by first moving the center point of the
fiducial mark by a factor of 7/6 of the number of pixels in the center of the
fiducial mark. This is done in either negative or positive x and y direction,
depending on the corner. This will return a good estimate for where the
corner should be. However, this estimate may not always be good enough
depending on the amplitude of the spatial distortion. To make sure an even
better corner point is achieved, a small area around the corner is extracted
from the image. This small area is then used to more precisely determine
where the corner should be.

The fourth corner in the lower right edge of the QR-code is found in a
di�erent way. In most versions of QR-codes, or at least the ones used for
this study, there is a so called alignment pattern in the lower right area of
the QR-code. The alignment pattern consists of white and black pixels with
the ratio 1:1:1 in all directions. Searching for this ratio over the whole image
would generate too many false positives, making it di�cult to determine
where the alignment pattern really is. However, it can be found using the
normalized 2D cross correlation.

In order to use the normalized 2D cross correlation a template has to be
created. The template is created to look like the alignment pattern, and is
calculated the following way. As mentioned earlier, the black pixels in the
center portion of the fiducial mark have been counted, which means the size
of the center portion is known. By dividing the size of the center portion
by 3, the approximated size of one bit in the QR-code is achieved. This can
now be used to determine the size of the template. The size of the template
should be 5 times as big as the size of one bit in the QR-code. Then the

7

template is filled with black and white pixels in the order white, black and
white.

When the template has been created it is used to scan only lower right
quarter of the QR-code. The normalized 2D cross correlation function is
built in to Matlab and is called normxcorr2 [4]. This function will return a
correlation matrix with values spanning from -1 to 1.

The normalized cross correlation between the template and the image is
calculated using Eq.2.

“(u,v) =
q

x,y

[f(x,y) ≠ ¯f
u,v

][t(x ≠ u,y ≠ v) ≠ t̄]
Óq

x,y

[f(x,y) ≠ ¯f
u,v

]2 q
x,y

[t(x ≠ u,y ≠ v) ≠ t̄]2
Ô0.5 (2)

Where t̄ is the mean value of the template, f̄
u,v

is the mean value of the
image currently under the template [9].

By extracting the largest value from the correlation matrix the coordi-
nates for the alignment pattern are achieved. These coordinates together
with the coordinates for the other corners are then saved in the moving
points - matrix.

Figure 7: To the right: the correlation matrix visualized. To the left: The

center of the alignment pattern marked with green.

The fixed points - matrix contains the points we want to move the moving
points to. These are our desired, straight points. These points are calculated
by using the same size for one bit in the QR-code calculated in the previous
step. The estimated height and width are achieved by multiplying the size

8

of one bit by 41, since it is known that the size of the QR-code is 41x41 bits.
Now the coordinates of three desired corners are determined. By calculating
three corners, the fourth corner also achieved no extra calculations needed.
The fourth corner can be used to calculate where the alignment pattern
should be in the straightened up image. The alignment pattern should be
seven bits from the fourth corner in both x and y direction. When all these
corners have been determined they are passed in to the projection function.

3.4.2 Projective Transformation

The most common distortion that could be fixed with this transform is the
perspective distortion where the image was taken from a view with some
perspective angle to the QR-code.

Tx = xÕ (3)
Q

ca
A B C
D E F
G H 1

R

db ·

Q

ca
x1 x2 x3 x4
y1 y2 y3 y4
1 1 1 1

R

db =

Q

ca
x1

Õ x2
Õ x3

Õ x4
Õ

y1
Õ y2

Õ y3
Õ y4

Õ

1 1 1 1

R

db (4)

T = xÕx≠1 (5)
A linear equation represented by a transformation matrix T applied on the
fixed points x that is equal to the corner points xÕ can be used to extract the
transformation matrix in Eq.3 and Eq.5 [8]. Since we have four points with
two coordinates there will be total eight linear equations to solve Eq.4.

In Eq.5 the inverse of the fixed points multiplied with the corner points
will give the transformation matrix. This inverse could be solved by using
Moore-Penrose pseudo inverse [10]. The inverse of the transformation matrix
will have to be calculated since the transformation matrix corresponds to
the transformation from the fixed points to the distorted corner points. This
means that the inverse T ≠1 is the desired transformation matrix.

In matlab the function called fitgeotrans [1] was used and it returns a
transformation matrix. It uses a built in solver for linear equations which
uses a least square solution similar to the Moore-Penrose pseudo inverse [3].
This transformation matrix, together with the original image are sent in to
the function imwarp [2]. This function applies the transformation matrix
to the image and interpolates new sample values in the image with nearest
neighbour interpolation.

9

Figure 8: Neareast neighbour interpolation takes the value of the closest sam-

pled point.

The projective transformation together with the rotation is the geometric
restoration in this implementation. The result before and after the transfor-
mation is shown in Fig.9.

Figure 9: To the left: Red dots represent moving points. Cyan dots represent

fixed points. The point in the upper left corner is the same for both fixed and

moving points. To the right is the image after projective transformation.

3.5 Cropping
When the image has been corrected for perspective distortion, the QR-code
is cropped from the image. Since the image now should be rotated and
transformed properly, this step can be made without the risk of losing any
information. The rectangle which spans the area used for cropping is the
same rectangle used in the fixed points - matrix mentioned in the previous
section. This is possible since the image is warped and mapped to match

10

the fixed points. When the QR-code has been cropped from the image, the
QR-code is resized so that it becomes a square image.

3.6 Decoding the QR-code
At this stage a binary image of a QR code without the white border is the
input to this function. This is where the bits in the QR-code are translated
into numbers and then to characters using the ASCII table.

First the dimensions of the image are divided into 41x41 since the version
6 QR-codes has these dimensions. The fiducial marks and the alignment
pattern are ignored and all bits in sequence of 8 bits(1 byte) are translated
into characters and saved in a char array. The image is scanned vertically
and when all information in the QR-code has been decoded the char array is
transformed into a string and returned as the final result.

Figure 10: The red dots represent where information is extracted.

4 Result
The implementation has been tested on 54 images that include three di�erent
images with di�erent rotations, distortions and resolution. The algorithm

11

Name of folder Images where decoding fails Successful decoding
Images_Training_1 None 100 % (24/24)
Images_Training_2 None 100 % (6/6)
Images_Training_3 Hus_2e.png 83,3 % (5/6)
Images_Training_4 None 100 % (6/6)
Images_Training_5 None 100 % (8/8)
Images_Training_Illum None 100 % (4/4)
Total Hus_2e.png 98,1 % (53/54)

Table 1: Result of the training set.

returns the correct string for all images except one where a capital A is
returned instead of a lower case a. The reason for this error is unknown.

5 Conclusion and Discussion
This implementation works for the majority of the images tested, see Table.1,
with a fairly good performance. It can extract QR-codes and decode them
in images with quite the amount of distortion and rotation. Given the time
spent on this project we are satisfied with the result, but there are many
things that could be improved in future work.

5.1 Performance
Matlab is a powerful and fast tool to use when using matrix operations. In a
problem like this, where a lot of searching in images has to be made, Matlab
is not very fast since traditional loops are not really optimized. There is
one place in the implementation where the whole image is scanned. This
is the step where the fiducial marks are found, and is by far the heaviest
part to calculate in the implementation. Even though optimizations have
been made such as only scanning every fourth pixel, preallocating space and
using the Matlab function bwconncomp the implementation can take up to
six seconds to run for large images. The function bwconncomp was used
instead of counting pixels in the initial step of the implementation.

The average performance in speed is good, with an old laptop1, an image
with the dimensions 3994x2997 which is unusually big, as input take approx-
imately 6 seconds to execute. With a more optimized language like C++

1Macbook Pro 2011, CPU: 2.3 GHz Intel Core i5 dual core, RAM: 8 GB 1333 MHz
DDR3.

12

or similar an improvement could be made but with Matlab we consider that
this is fast enough. See Fig.11.

Figure 11: Benchmark test that shows the time each function takes to execute

with an image with the dimensions 3994x2997. The time is shown in real

time.

5.2 Corner detection
The corner detection used in this implementation is sensitive for noise since
the algorithm only compares two points in the close neighbourhood of the
corner. If there is noise present, there is a risk that the algorithm returns a
bad corner. The corners will never be perfectly detected but close enough to
achieve an image where it is possible to decode the QR-code. But the corners
will lose precision the more geometric distortion there is and at some point
the corners will be too inaccurate to use.

A possible improvement could be to implement a well known corner de-
tection like Harris-Stephens algorithm to find more accurate corners and to
find the corner in cases where the geometric and distortion is very intense.

5.3 Transformations
The most common distortion in the test images seems to be perspective
distortion. Therefore this is the only kind of geometric distortion accounted
for. If other geometric distortions like Barrel and Pincushion distortion would
be present, the correction may be wrong since these distortions require more
than four points in the transformation to return a satisfying result.

5.4 Special cases
As mentioned the implementation works for images with quite much distor-
tion and rotation but if the distortion and rotation would be more extreme,
it would probably not work. If the rotation is very big like 90 degrees or
more the program would fail since the fiducial marks and alignment patterns

13

would be at the wrong positions. No check is done for this but could be
a good improvement for future work. The algorithm would also fail if the
QR-code is reversed.

Also if an image has none or more than one QR-code the implementation
would fail since it is limited to only be able to find one QR-code. If no
QR-code is detected, a future version could possibly give some kind of error
message back to the user.

The case where the image has much camera shake distortion [7] is also
not considered and could be a possible improvement to add to the pipeline.

References
[1] Mathworks, documentation of matlab function fitgeotrans. http://

se.mathworks.com/help/images/ref/fitgeotrans.html. Accessed:
2014-12-10.

[2] Mathworks, documentation of matlab function imwarp. http://se.

mathworks.com/help/images/ref/imwarp.html. Accessed: 2014-12-
10.

[3] Mathworks, documentation of matlab function mldivide. http://se.

mathworks.com/help/matlab/ref/mldivide.html. Accessed: 2014-
12-10.

[4] Mathworks, documentation of matlab function normxcorr2. http://se.

mathworks.com/help/images/ref/normxcorr2.html. Accessed: 2014-
12-10.

[5] Luiz FF Belussi and Nina ST Hirata. Fast qr code detection in arbitrarily
acquired images. In Graphics, Patterns and Images (Sibgrapi), 2011 24th

SIBGRAPI Conference on, pages 281–288. IEEE, 2011.

[6] Derek Bradley and Gerhard Roth. Adaptive thresholding using the in-
tegral image. Journal of graphics, gpu, and game tools, 12(2):13–21,
2007.

[7] Chung-Hua Chu, De-Nian Yang, Ya-Lan Pan, and Ming-Syan Chen.
Stabilization and extraction of 2d barcodes for camera phones. Multi-

media systems, 17(2):113–133, 2011.

[8] Franz Lemmermeyer. Introduction to algebraic geometry ch.7. http:

//www.fen.bilkent.edu.tr/~franz/ag05/ag-07.pdf, 2005. Accessed
2014-12-10.

14

http://se.mathworks.com/help/images/ref/fitgeotrans.html
http://se.mathworks.com/help/images/ref/fitgeotrans.html
http://se.mathworks.com/help/images/ref/imwarp.html
http://se.mathworks.com/help/images/ref/imwarp.html
http://se.mathworks.com/help/matlab/ref/mldivide.html
http://se.mathworks.com/help/matlab/ref/mldivide.html
http://se.mathworks.com/help/images/ref/normxcorr2.html
http://se.mathworks.com/help/images/ref/normxcorr2.html
http://www.fen.bilkent.edu.tr/~franz/ag05/ag-07.pdf
http://www.fen.bilkent.edu.tr/~franz/ag05/ag-07.pdf

[9] JP Lewis. Fast normalized cross-correlation. In Vision interface, vol-
ume 10, pages 120–123, 1995.

[10] R. Penrose. On best approximate solutions of linear matrix equa-
tions. Mathematical Proceedings of the Cambridge Philosophical Society,
52:17–19, 1 1956.

15

	Introduction
	Theory
	Method
	Binarizing the Image
	Localizing the Fiducial Marks
	Rotation
	Adjustment for Perspective Distortion
	Corner Detection
	Projective Transformation

	Cropping
	Decoding the QR-code

	Result
	Conclusion and Discussion
	Performance
	Corner detection
	Transformations
	Special cases

